智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

3月25日,BSN第二次开发者大赛正式启动,本次大赛以“编写基于多种底层框架的智能合约”为主题,开发者可基于FISCO BCOS等主流底层框架,结合业务场景设计、开发并部署智能合约。

3月25日,BSN第二次开发者大赛正式启动,本次大赛以“编写基于多种底层框架的智能合约”为主题,开发者可基于FISCO BCOS等主流底层框架,结合业务场景设计、开发并部署智能合约。

为了让大家更好上手智能合约开发,区块链服务网络发展联盟与FISCO BCOS开源社区共同推出“7个课时速成智能合约全能型开发”系列教程,助力开发者学习并熟悉合约开发,轻松应对此次大赛并拔得头筹。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

系列专题 | 超话区块链之智能合约专场

运行篇:智能合约编写之 Solidity 的运行原理

作者:储雨知

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

引 言 

作为一门面向智能合约的语言,Solidity与其他经典语言既有差异也有相似之处。

一方面,服务于区块链的属性使其与其他语言存在差异。例如,合约的部署与调用均要经过区块链网络确认;执行成本需要被严格控制,以防止恶意代码消耗节点资源。

另一方面,身为编程语言,Solidity的实现并未脱离经典语言,比如Solidity中包含类似栈、堆的设计,采用栈式虚拟机来进行字节码处理。

本系列前几篇文章介绍了如何开发Solidity程序,为了让读者知其然更知其所以然,本文将进一步介绍Solidity的内部运行原理,聚焦于Solidity程序的生命周期和EVM工作机制。

Solidity的生命周期 

与其他语言一样,Solidity的代码生命周期离不开编译、部署、执行、销毁这四个阶段。下图整理展现了Solidity程序的完整生命周期:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

经编译后,Solidity文件会生成字节码。这是一种类似jvm字节码的代码。部署时,字节码与构造参数会被构建成交易,这笔交易会被打包到区块中,经由网络共识过程,最后在各区块链节点上构建合约,并将合约地址返还用户。

当用户准备调用该合约上的函数时,调用请求同样也会经历交易、区块、共识的过程,最终在各节点上由EVM虚拟机来执行。

下面是一个示例程序,我们通过remix探索它的生命周期。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

编译

源代码编译完后,可以通过ByteCode按钮得到它的二进制:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

还可以得到对应的字节码(OpCode):

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

其中下述指令集为set函数对应的代码,后面会解释set函数如何运行。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

部署

编译完后,即可在remix上对代码进行部署,构造参数传入0x123:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

部署成功后,可得到一条交易回执:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

点开input,可以看到具体的交易输入数据:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

上面这段数据中,标黄的部分正好是前文中的合约二进制;而标紫的部分,则对应了传入的构造参数0x123。

这些都表明,合约部署以交易作为介质。结合区块链交易知识,我们可以还原出整个部署过程:

  • 客户端将部署请求(合约二进制,构造参数)作为交易的输入数据,以此构造出一笔交易
  • 交易经过rlp编码,然后由发送者进行私钥签名
  • 已签名的交易被推送到区块链上的节点
  • 区块链节点验证交易后,存入交易池
  • 轮到该节点出块时,打包交易构建区块,广播给其他节点
  • 其他节点验证区块并取得共识。不同区块链可能采用不同共识算法,FISCO BCOS中采用PBFT取得共识,这要求经历三阶段提交(pre-prepare,prepare, commit)
  • 节点执行交易,结果就是智能合约Demo被创建,状态字段_state的存储空间被分配,并被初始化为0x123

执行

根据是否带有修饰符view,我们可将函数分为两类:调用与交易。由于在编译期就确定了调用不会引起合约状态的变更,故对于这类函数调用,节点直接提供查询即可,无需与其他区块链节点确认。而由于交易可能引起状态变更,故会在网络间确认。

下面将以用户调用了set(0x10)为假设,看看具体的运行过程。

首先,函数set没有配置view/pure修饰符,这意味着其可能更改合约状态。所以这个调用信息会被放入一笔交易,经由交易编码、交易签名、交易推送、交易池缓存、打包出块、网络共识等过程,最终被交由各节点的EVM执行。

在EVM中,由SSTORE字节码将参数0xa存储到合约字段_state中。该字节码先从栈上拿到状态字段_state的地址与新值0xa,随后完成实际存储。

下图展示了运行过程:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

这里仅粗略介绍了set(0xa)是如何运行,下节将进一步展开介绍EVM的工作机制以及数据存储机制。

销毁

由于合约上链后就无法篡改,所以合约生命可持续到底层区块链被彻底关停。若要手动销毁合约,可通过字节码selfdestruct。销毁合约也需要进行交易确认,在此不多作赘述。

EVM原理

在前文中,我们介绍了Solidity程序的运行原理。经过交易确认后,最终由EVM执行字节码。对EVM,上文只是一笔带过,这一节将具体介绍其工作机制。

运行原理

EVM是栈式虚拟机,其核心特征就是所有操作数都会被存储在栈上。下面我们将通过一段简单的Solidity语句代码看看其运行原理:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

这段代码经过编译后,得到的字节码如下:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

为了读者更好了解其概念,这里精简为上述3条语句,但实际的字节码可能更复杂,且会掺杂SWAP和DUP之类的语句。

我们可以看到,在上述代码中,包含两个指令:PUSH1和ADD,它们的含义如下:

  • PUSH1:将数据压入栈顶。
  • ADD:POP两个栈顶元素,将它们相加,并压回栈顶。

这里用半动画的方式解释其执行过程。下图中,sp表示栈顶指针,pc表示程序计数器。当执行完push1 0x1后,pc和sp均往下移:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

类似地,执行push1 0x2后,pc和sp状态如下:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

最后,当add执行完后,栈顶的两个操作数都被弹出作为add指令的输入,两者的和则会被压入栈:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

存储探究

在开发过程中,我们常会遇到令人迷惑的memory修饰符;阅读开源代码时,也会看到各种直接针对内存进行的assembly操作。不了解存储机制的开发者遇到这些情况就会一头雾水,所以,这节将探究EVM的存储原理。

在前文《智能合约编写之Solidity的基础特性》中我们介绍过,一段Solidity代码,通常会涉及到局部变量、合约状态变量。

而这些变量的存储方式存在差别,下面代码表明了变量与存储方式之间的关系。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

栈用于存储字节码指令的操作数。在Solidity中,局部变量若是整型、定长字节数组等类型,就会随着指令的运行入栈、出栈。

例如,在下面这条简单的语句中,变量值1会被读出,通过PUSH操作压入栈顶:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

对于这类变量,无法强行改变它们的存储方式,如果在它们之前放置memory修饰符,编译会报错。

内存

内存类似java中的堆,它用于储存"对象"。在Solidity编程中,如果一个局部变量属于变长字节数组、字符串、结构体等类型,其通常会被memory修饰符修饰,以表明存储在内存中。

本节中,我们将以字符串为例,分析内存如何存储这些对象。

1. 对象存储结构

下面将用assembly语句对复杂对象的存储方式进行分析。

assembly语句用于调用字节码操作。mload指令将被用于对这些字节码进行调用。mload(p)表示从地址p读取32字节的数据。开发者可将对象变量看作指针直接传入mload。

在下面代码中,经过mload调用,data变量保存了字符串str在内存中的前32字节。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

掌握mload,即可用此分析string变量是如何存储的。下面的代码将揭示字符串数据的存储方式:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

data变量表示str的0~31字节,data2表示str的32~63字节。运行strStorage函数的结果如下:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

可以看到,第一个数据字得到的值为6,正好是字符串"你好"经UTF-8编码后的字节数。第二个数据字则保存的是"你好"本身的UTF-8编码。

熟练掌握了字符串的存储格式之后,我们就可以运用assembly修改、拷贝、拼接字符串。读者可搜索Solidity的字符串库,了解如何实现string的concat。

2. 内存分配方式

既然内存用于存储对象,就必然涉及到内存分配方式。

memory的分配方式非常简单,就是顺序分配。下面我们将分配两个对象,并查看它们的地址:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

运行此函数后,返回结果将包含两个数据字:

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

这说明,第一个字符串str1的起始地址是0x80,第二个字符串str2的起始地址是0xc0,之间64字节,正好是str1本身占据的空间。此时的内存布局如下,其中一格表示32字节(一个数据字,EVM采用32字节作为一个数据字,而非4字节):

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

  • 0x40~0x60:空闲指针,保存可用地址,本例中是0x100,说明新的对象将从0x100处分配。可以用mload(0x40)获取到新对象的分配地址。
  • 0x80~0xc0:对象分配的起始地址。这里分配了字符串aaa
  • 0xc0~0x100:分配了字符串bbb
  • 0x100~...:因为是顺序分配,新的对象将会分配到这里。

状态存储

顾名思义,状态存储用于存储合约的状态字段。

从模型而言,存储由多个32字节的存储槽构成。在前文中,我们介绍了Demo合约的set函数,里面0x0表示的是状态变量_state的存储槽。所有固定长度变量会依序放到这组存储槽中。

对于mapping和数组,存储会更复杂,其自身会占据1槽,所包含数据则会按相应规则占据其他槽,比如mapping中,数据项的存储槽位由键值k、mapping自身槽位p经keccak计算得来。

从实现而言,不同的链可能采用不同实现,比较经典的是以太坊所采用的MPT树。由于MPT树性能、扩展性等问题,FISCO BCOS放弃了这一结构,而采用了分布式存储,通过rocksdb或mysql来存储状态数据,使存储的性能、可扩展性得到提高。

结 语

本文介绍了Solidity的运行原理,运行原理总结如下。

首先,Solidity源码会被编译为字节码,部署时,字节码会以交易为载体在网络间确认,并在节点上形成合约;合约函数调用,如果是交易类型,会经过网络确认,最终由EVM执行。

EVM是栈式虚拟机,它会读取合约的字节码并执行。

在执行过程中,会与栈、内存、合约存储进行交互。其中,栈用于存储普通的局部变量,这些局部变量就是字节码的操作数;内存用于存储对象,采用length+body进行存储,顺序分配方式进行内存分配;状态存储用于存储状态变量。

理解Solidity的运行方式及其背后原理,是成为Solidity编程高手必经之路。

智能合约编写之Solidity运行原理 | FISCO BCOS系列开发教程

FISCO BCOS的代码完全开源且免费

本文来自,仅作分享,存在异议请联系平台删除。本文观点不代表刺猬财经 - 刺猬区块链资讯站立场。

(0)
上一篇 2020年5月27日 下午1:38
下一篇 2020年5月27日 下午2:15

相关推荐